Groups of Maximal Arcs

نویسندگان

  • Nicholas A. Hamilton
  • Tim Penttila
چکیده

Apart from hyperovals and their duals there are only three classes of maximal arcs known in Desarguesian projective planes. Two classes are due to J. A. Thas and one to R. H. F. Denniston. In this paper collineation stabiliser and isomorphism problems for those maximal arcs in Desarguesian projective planes are examined. The full collineation stabilisers of the known maximal arcs are calculated, and it is shown that all of one class of Thas maximal arcs and those of the second class of Thas maximal arcs in Desarguesian projective planes arising from elliptic quadrics are isomorphic to those of Denniston. The final result is to classify maximal arcs in Desarguesian projective planes whose collineation stabilisers are transitive on the points of the maximal arcs. 2001 Academic Press

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A geometric approach to Mathon maximal arcs

In 1969, Denniston gave a construction of maximal arcs of degree d in Desarguesian projective planes of even order q, for all d dividing q. In 2002 Mathon gave a construction method generalizing the one of Denniston. We will give a new geometric approach to these maximal arcs. This will allow us to count the number of non-isomorphic Mathon maximal arcs of degree 8 in PG(2, 2h), h 6= 7 and prime...

متن کامل

Singer 8-arcs of Mathon type in PG(2, 27)

In [3] De Clerck, De Winter and Maes counted the number of non-isomorphic Mathon maximal arcs of degree 8 in PG(2, 2), h 6= 7 and prime. In this article we will show that in PG(2, 2) a special class of Mathon maximal arcs of degree 8 arises which admits a Singer group (i.e. a sharply transitive group) on the 7 conics of these arcs. We will give a detailed description of these arcs, and then cou...

متن کامل

Maximal Arcs in Desarguesian Planes

A ( k , n ) a r c in a projective plane is a set of k points, at most n on every line. If the order of the plane is q, then k < 1 + (q + 1) (n 1) = qn q + n with equality if and only if every line intersects the arc in 0 or n points. Arcs realizing the upper bound are called maximal arcs. Equality in the bound implies tha t n lq or n = q + l . If 1 < n < q, then the maximal arc is called non-tr...

متن کامل

Arcs on Spheres Intersecting at Most Twice

Let p be a puncture of a punctured sphere, and let Q be the set of all other punctures. We prove that the maximal cardinality of a set A of arcs pairwise intersecting at most once, which start at p and end in Q, is |χ|(|χ| + 1). We deduce that the maximal cardinality of a set of arcs with arbitrary endpoints pairwise intersecting at most twice is |χ|(|χ|+ 1)(|χ|+ 2).

متن کامل

On Mathon’s construction of maximal arcs in Desarguesian planes

We study the problem of determining the largest d of a non-Denniston maximal arc of degree 2 generated by a fp; 1g-map in PGð2; 2Þ via a recent construction of Mathon [9]. On one hand, we show that there are fp; 1g-maps that generate non-Denniston maximal arcs of degree 2ðmþ1Þ=2, where md 5 is odd. Together with Mathon’s result [9] in the m even case, this shows that there are always fp; 1g-map...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 94  شماره 

صفحات  -

تاریخ انتشار 2001